Chem. Ber. 113, 2609-2615 (1980)

Konformationsanalyse, XXII¹⁾

Twist-Boat-Konformation von Methyl-2,3,4-tri-O-benzoyl-β-D-xylopyranosid im Kristall

Kristina Vangehr^{a)}, Peter Luger^{a)} und Hans Paulsen^{b)*}

Institut für Kristallographie, Fachbereich Chemie der Freien Universität Berlin^{a)}, Takustr. 6, D-1000 Berlin 33, und

Institut für Organische Chemie und Biochemie der Universität Hamburg^{b)}, Martin-Luther-King-Platz 6, D-2000 Hamburg 13

Eingegangen am 22. November 1979

Methyl-2,3,4-tri-O-benzoyl- β -D-xylopyranosid (5) kristallisiert in der monoklinen Raumgruppe $P2_1$ mit 2 Molekülen in der asymmetrischen Einheit. Die Strukturanalyse (*R*-Wert 0.044) ergibt, daß 5 im Kristall in einer Twist-Boat-Konformation 2S_O vorliegt, bei der die Atome C1, C3, C4, C5 und O5, C1, C2, C4 in einer Ebene liegen. In Lösung weist 5 ein Konformerengleichgewicht der Sesselformen mit einem Anteil von 26% 1C_4 -Form auf.

Conformational Analysis, XXII¹⁾

Twist-Boat Conformation of Methyl 2,3,4-Tri-O-benzoyl-B-D-xylopyranoside in the Crystal

Methyl 2,3,4-tri-O-benzoyl- β -D-xylopyranoside (5) crystallizes in the monoclinic space group $P2_1$ with two molecules in the asymmetric unit. Structure analysis (*R*-value 0.044) reveals that in the crystal 5 is present in a twist-boat conformation 2S_0 in which the atoms C1, C3, C4, C5 and O5, C1, C2, C4 lie in one plane. In solution, 5 shows an equilibrium of the chair conformations with a proportion of 26% of the 1C_4 -form.

Die 2,3,4-Tri-O-benzoyl- β -D-xylopyranosylhalogenide haben sich vom Standpunkt der Konformationsanalyse als eine äußerst interessante Substanzklasse erwiesen. Das Fluorid 1²), das Bromid 2^{3,4}) und das Chlorid 3⁵) liegen in Lösung zu 90 – 100% in der ungewöhnlichen ¹C₄-Konformation vor. Die Präferenz dieser Konformation wird auf zwei Effekte zurückgeführt⁴): einmal den hohen anomeren Effekt des Halogenid-Substituenten, zum anderen auf die relativ geringe 1,3-Diaxialwechselwirkung der O-Benzoyl-Gruppen. Diese Wechselwirkung ist, wie wir fanden⁶), um etwa 0.4 – 0.6 kcal/mol geringer als die zweier O-Acetyl-Gruppen. Demgemäß liegt der Anteil an ¹C₄-Konformation bei den 2,3,4-Tri-O-acetyl- β -D-xylopyranosylhalogeniden mit etwa 80% niedriger^{2,4,5}). Die Halogenide 1⁷) und 2⁴) kristallisieren ebenfalls in der ¹C₄-Konformation. Das Chlorid 3⁸) dagegen kristallisiert in einer Twist-Boat-Konformation ²S₀. Dies ist unseres Wissens der erste Fall, daß bei einem monocyclischen System ohne raumerfüllende Gruppen eine derartige Konformation im Kristall eingenommen wird. In dieser Konformation steht das Chlor infolge der Wirkung des anomeren Effektes quasi-axial. Trotzdem ist das ungewöhnliche Verhalten des Chlorids **3** nur schwer zu verstehen.

Bei anderen Verbindungen ist der anomere Effekt abgesenkt und der Anteil der ${}^{1}C_{4}$ -Form somit geringer. Dies ist bei dem Tetrabenzoat 4 der Fall, bei dem nur noch 50% der ${}^{1}C_{4}$ -Form in Lösung vorliegt⁹).

Überraschenderweise kristallisiert 4 aber ebenfalls wie 1 und 2 in der angegebenen tetraaxialen Form¹⁰. Um festzustellen, ob die O-Benzoyl-Gruppen für dieses bemerkenswerte Verhalten verantwortlich sind, wurde 1,5-Anhydro-2,3,4-tri-O-benzoylxylit (6) untersucht¹⁰, bei dem am anomeren Zentrum kein Substituent mehr vorhanden ist und somit auch kein anomerer Effekt auftritt. In Lösung liegt 6 zu 19% in der ${}^{1}C_{4}$ -Form vor. Im Kristall zeigt 6 ein normales Verhalten. Die Verbindung kristallisiert in der zu erwartenden triäquatorialen normalen ${}^{4}C_{1}$ -Konformation¹⁰. Damit ist gezeigt, daß derartige Verbindungen mit O-Benzoyl-Resten prinzipiell in der alläquatorialen Konformation kristallisieren können.

Von Interesse ist das Mittelglied zwischen 4 und 6, bei dem der anomere Effekt gegenüber 4 weiter abgesenkt wird, jedoch noch nicht wie bei 6 vollständig verschwindet. Geeignet ist Methyl-2,3,4-tri-O-benzoyl- β -D-xylopyranosid (5)^{11,12}, da bekanntermaßen der anomere Effekt von Methoxy-Gruppen kleiner als der von Benzoyl-Gruppen ist. Der Anteil an ${}^{1}C_{4}$ -Form 5b beträgt daher in Lösung nur 26% ¹¹. Weiterhin wurde jetzt die Struktur des Mittelgliedes 5 im Kristall untersucht, ungeachtet der Tatsache, daß 5 eigentlich wegen der Präferenz der ${}^{4}C_{1}$ -Form 5a in alläquatorialer Konformation kristallisieren sollte.

Kristalldaten und Diskussion der Struktur von 5

Kristalle vom Methyl-2,3,4-tri-*O*-benzoyl- β -D-xylopyranosid (5)^{11,12}), C₂₇O₈H₂₄, Schmp. 110°C, $[\alpha]_D^{2D} = -69.8^{\circ}$ (c = 1.0 in Chloroform), wurden aus Benzol/Hexan gewonnen. Die Verbindung kristallisiert in der monoklinen Raumgruppe P_{2_1} mit 2 Molekülen in der asymmetrischen Einheit. Die Gitterkonstanten betragen a = 1092.2 (4) pm, b = 3735.5 (2) pm, c = 588.3 (3) pm, $\beta = 90.48$ (2)°. Das Zellvolumen ist 2.4000 \cdot 10⁹ pm, die Dichte = 1.32 Mg/m³, der lineare Absorptionskoeffizient beträgt 8.2 cm⁻¹ (Cu- K_{α}).

Die Röntgenintensitäten wurden auf einem Siemens-Vierkreis-Diffraktometer (AED) mit Nigefilterter Cu- K_{α} -Strahlung (1.5418 Å) nach der Fünfwertmethode vermessen. Von 4112 Reflexen waren 609 in der Intensität kleiner als der doppelte statistische Fehler und wurden als unbeobachtet eingestuft. Auf eine Absorptionskorrektur wurde wegen der geringen Kristallgröße von 0.14 \times 0.05 \times 0.85 mm und des kleinen Wertes von μ verzichtet. Das Phasenproblem wurde mit Hilfe des Programms MULTAN¹³⁾ gelöst. Die Verfeinerung erfolgte nach der Methode der kleinsten Quadrate mit anisotropen Temperaturfaktoren für die schweren Atome und isotropen für die Wasserstoffatome (X-RAY-Programmsystem¹⁴⁾). Konvergenz wurde bei einem *R*-Wert von 0.044 erhalten. Die Atomkoordinaten sind in Tab. 1. angegeben. Eine Liste der Temperaturfaktoren sowie der beobachteten und berechneten Strukturfaktoren kann von den Verfassern auf Wunsch erhalten werden.

Molekül A				Molekül B		
Atom	X	Ŷ	Z	x	Y	Z
$ \begin{array}{c} A \mbox{tom} \\ \hline C \ 1 \\ C \ C \ 2 \\ C \ C \ C \ C \ C \ C \ C \ C \ C \ C$	X 0, 3028 (4) 0, 2187 (4) 0, 22834 (4) 0, 3968 (4) 0, 4281 (2) 0, 2728 (3) 0, 3361 (5) 0, 1185 (2) 0, 0033 (4) -0, 0185 (3) 0, 0033 (4) -0, 0591 (4) -0, 0591 (4) -0, 0591 (4) -0, 1513 (5) 0, 2713 (5) 0, 2713 (5) 0, 2713 (5) 0, 2713 (5) 0, 2713 (5) 0, 0988 (4) 0, 0988 (4) 0, 0988 (4) 0, 0988 (4) 0, 0052 (5) 0, 0163 (4) 0, 6818 (4) 0, 7529 (6) 0, 6579 (6) 0, 6579 (6) 0, 55728 (5) 0, 292 (3) 0, 3550 (4) 0, 3550 (Y 0,1716(0) 0,2223(1) 0,2276(1) 0,2276(1) 0,2276(1) 0,2168(1) 0,1656(1) 0,1857(1) 0,1965(1) 0,1965(1) 0,1965(1) 0,1965(1) 0,1965(1) 0,1965(1) 0,1965(1) 0,1965(1) 0,1965(1) 0,1965(1) 0,1965(1) 0,1662(2) 0,1662(2) 0,1662(2) 0,1662(2) 0,1809(1) 0,2576(1) 0,2576(1) 0,2576(1) 0,2576(1) 0,2576(1) 0,2576(1) 0,2576(1) 0,2576(1) 0,2576(1) 0,2576(1) 0,2576(1) 0,2562(1) 0,3325(1) 0,2608(1) 0,2608(1) 0,2608(1) 0,2608(1) 0,2608(1) 0,2608(1) 0,2608(1) 0,2608(1) 0,2608(1) 0,2608(1) 0,2116(1) 0,212(1) 0,2116(1) 0,212(1) 0,211(1) 0,212(1) 0,213(1) 0,213(1) 0,212(1) 0,213(1) 0,213(1) 0,213(1) 0,213(1) 0,213(1) 0,213(1) 0,213(1) 0,213(1) 0,213(1) 0,310(1) 0,322(1) 0,320(1) 0,245(1) 0,24	$\begin{array}{c} z\\ \hline 0, 6411 (7)\\ 0, 5606 (7)\\ 0, 5997 (7)\\ 0, 5161 (7)\\ 0, 6631 (8)\\ 0, 6118 (5)\\ 0, 8700 (5)\\ 0, 9669 (9)\\ 0, 4379 (5)\\ 0, 4921 (8)\\ 0, 4379 (5)\\ 0, 4921 (8)\\ 0, 4379 (5)\\ 0, 4921 (8)\\ 0, 1327 (8)\\ -0, 000 (1)\\ 0, 272 (1)\\ 0, 272 (1)\\ 0, 3491 (4)\\ 0, 073 (1)\\ 0, 272 (1)\\ 0, 3491 (4)\\ 0, 0135 (7)\\ -0, 0139 (5)\\ 0, 1085 (7)\\ -0, 0189 (5)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2448 (9)\\ 0, 2799 (8)\\ 0, 2448 (9)\\ 0, 2799 (8)\\ 0, 2448 (9)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 2422 (8)\\ 0, 2799 (8)\\ 0, 279 (1)\\ 0, 577 (1)\\ -0, 279 (1)\\ 0, 577 (1)\\ -0, 279 (1)\\ 0, 577 (8)\\ -0, 213 (5)\\ 0, 041 (8)\\ 0, 378 (8)\\ 0, 437 (6)\\ 0, 0168 (7)\\ 0, 168$	X 0,0529(4) 0,0311(4) 0,0353(4) 0,1474(4) 0,1376(3) 0,2028(4) 0,1776(3) 0,0817(7) -0,1305(2) -0,2451(4) -0,2685(3) -0,3588(4) -0,5478(5) -0,3558(4) -0,555(4) -0,555(4) -0,555(4)	Y 1,0570(1) 1,0264(1) 1,0264(1) 1,0264(1) 1,0480(1) 1,0480(1) 1,0480(1) 1,0595(2) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0485(1) 1,0593(2) 0,9707(1) 0,9707(1) 0,9717(1) 0,9310(1) 0,9714(1) 0,9744(1) 0,9220(1) 0,97454(1) 0,93454(1) 0,9658(1) 0,9350(2) 0,9166(2) 1,077(1) 1,0665(1) 1,005(1) 1,066(1) 1,005(1) 1,066(1) 1,036(1)	$\frac{2}{-0,1337(8)}$ -0,05889(7) -0,05889(7) -0,05889(7) -0,0184(7) -0,01782(9) -0,1056(5) -0,448(1) 0,0651(5) -0,448(1) 0,0651(5) 0,0114(8) -0,1418(6) 0,0651(5) 0,1041(9) 0,2441(1) 0,443(1) 0,443(1) 0,443(1) 0,443(1) 0,443(1) 0,5556(9) 0,3550(7) 0,5504(4) 0,5154(5) 0,5888(7) 0,5154(5) 0,5888(7) 0,5154(5) 0,249(1) 0,249(1) 0,249(1) 0,249(1) 0,249(1) 0,249(1) 0,249(1) 0,249(1) 0,249(1) 0,249(1) 0,249(1) 0,263(6) 0,263(6) 0,263(6) 0,263(6) 0,272(8) 0,663(1) 0,735(6) -0,336(6) -0,336(6) -0,336(6) -0,336(6) -0,336(6) -0,336(6) -0,336(6) -0,336(6) -0,582(8
H 26 H 27 II 33 H 34 F 36 H 36 H 37 H 43 H 44 H 45 H 46 H 47	$\begin{array}{c} -0,389 \ (5)\\ -0,233 \ (4)\\ 0,164 \ (3)\\ 0,012 \ (3)\\ -0,126 \ (4)\\ 0,130 \ (4)\\ 0,013 \ (4)\\ 0,013 \ (5)\\ 0,687 \ (4)\\ 0,836 \ (3)\\ 0,822 \ (5)\\ 0,653 \ (5)\\ 0,503 \ (4) \end{array}$	0,164 (1) 0,193 (1) 0,310 (1) 0,358 (1) 0,372 (1) 0,338 (1) 0,245 (1) 0,245 (1) 0,246 (1) 0,288 (1) 0,330 (1) 0,326 (1)	$\begin{array}{c} 0,336 \ (9)\\ 0,577 \ (8)\\ -0,213 \ (5)\\ -0,250 \ (6)\\ 0,041 \ (8)\\ 0,378 \ (8)\\ 0,378 \ (8)\\ 0,437 \ (6)\\ 0,168 \ (7)\\ -0,121 \ (6)\\ -0,413 \ (9)\\ -0,379 \ (8)\\ -0,08 \ (7) \end{array}$	$\begin{array}{c} -0.365 & (4) \\ -0.218 & (4) \\ -0.089 & (4) \\ -0.328 & (3) \\ -0.377 & (4) \\ -0.365 & (4) \\ 0.217 & (4) \\ 0.439 & (4) \\ 0.585 & (4) \\ 0.585 & (4) \\ 0.545 & (6) \\ 0.384 & (S) \\ 0.256 & (4) \end{array}$	1,092 (1) 1,064 (1) 0,917 (1) 0,869 (1) 0,857 (1) 0,932 (1) 0,986 (1) 0,984 (1) 0,942 (2) 0,898 (1) 0,900 (1)	0,648 0,403 0,728 0,750 0,490 0,114 0,054 0,334 0,608 0,92 0,911 0,604

Tab. 1. Atomparameter von Methyl-2,3,4-tri-O-benzoyl-β-D-xylopyranosid (5). (Standardabweichungen in Klammern)

Abstände (pm)	Molekül A	Molekül B	Winkel (⁰)	Molekül A	Molekül B
C1-C2	154.0(5)	153.3(6)	C1-C2-C3	112.1(3)	111.2(3)
C2-C3	151.6(6)	152.0(6)	C2-C3-C4	109.9(3)	110.0(3)
C3-C4	152.8(6)	152.4(6)	C3C4C5	111.1(3)	111.0(4)
C4-C5	152.3(6)	151.7(7)	C4-C5-O5	110.5(3)	110.4(4)
C5-05	144.7(5)	144.0(6)	C5-05-C1	111.3(3)	111.9(3)
05-C1	142.0(5)	141.1(5)	05-C1-C2	111.3(2)	111.6(4)
C1-01	140.7(5)	139.1(6)	C1-01-C11	113.0(3)	113.4(4)
01-C11	143.6(6)	143.1(8)	C2-02-C21	117.1(3)	117.6(3)
			C3-O3-C31	117.4(3)	117.2(3)
			C4-04-C41	117.5(3)	117.0(3)
Winkel (⁰)	Molekül A	Molekül B	Winkel (°)	Molekül A	Molekül E
C1-C2C3-C4	-58,4	-59,0	01-C1C2-02	-99,5	-97.9
C2-C3C4-C5	32,1	32,7	02-C2C3-03	65.4	65.7
C3-C4C5-05	28,4	27,9	03-C3C4-04	-95.9	-95.3
C4-C505-C1	-71,7	-70,5	H1-C1C2-H2	145.1	140.8
C5-05C1-C2	43,5	42,6	Н2-С2С3-Н3	-174.8	-167.6
05-C1C2-C3	20,1	20,9	H3-C3C4-H4	145,2	137,1
			H4-C4C5-H51	-91,8	-78,8
H2-C2O2-C21	13,8	17,0	H4-C4C5-H52	32,2	36,3
H3-C3O3-C31	-22,8	-23,5	01-0105-05	-75,0	~77,0
H4-C404-C41	-27,4	-31,9	05-c101-c11	-63.2	-63.1

Tab. 2. Wichtige Abstände (pm), Bindungswinkel (°) und Torsionswinkel (°) von 5 (Standardabweichungen in Klammern)

Abb. 1. Struktur von Methyl-2,3,4-tri-O-benzoyl-β-D-xylopyranosid (5) im Kristall

Die wichtigsten Bindungslängen und Bindungswinkel sowie eine Auswahl von interessierenden Torsionswinkeln enthält Tab. 2. Die Abb. 1 gibt die ermittelte Struktur von 5 in einer ORTEP-Zeichnung¹⁵⁾ wieder. Danach kristallisiert das Glycosid 5 nicht in der Sesselform. Der Pyranosering nimmt eine Twist-Boat-Konformation ein, denn die Tab. 2 zeigt Torsionswinkel, die den theoretischen Werten einer Twist-Boat-Konformation am Cyclohexanring nahekommen. *Hendrickson*¹⁶⁾ berechnete hierfür – 62.8; 30.1; 30.1; -62.8; 30.1; 30.1°. Vom Pyranosering liegen jeweils die vier Atome C1, C3, C4, C5 und O5, C1, C2, C4 nahezu in einer Ebene. Nach den Kohlenhydrat-Regeln liegt damit eine ²S₀-Konformation vor. Das Glycosid 5 verhält sich somit überraschenderweise ähnlich wie das Halogenid 3. Um einen Vergleich der Konformationen der sechs untersuchten Verbindungen zu erhalten, wurden nach *Cremer* und *Pople*¹⁷⁾ die Puckering-Parameter berechnet¹⁸⁾ (Tab. 3). In Abb. 2 werden die Ergebnisse deutlicher durch ein Diagramm wiedergegeben. Hieraus ist zu ersehen, daß 6 eine ideale Sesselkonformation ${}^{4}C_{1}$ (Nordpol) einnimmt. Auch in den Verbindungen 1, 2 und 4 liegt eine Sesselkonformation ${}^{1}C_{4}$ (Südpol) vor, die nur wenig in Richtung ${}^{5}H_{O}$ verzerrt ist. Das Halogenid 3 kommt dagegen der ${}^{2}S_{O}$ -Form sehr nahe und zeigt eine leichte Verzerrung zur Boat-Form ${}^{2,5}B$. Das jetzt untersuchte Methyl-Glycosid 5 liegt ebenfalls nahe bei der ${}^{2}S_{O}$ -Form, aber es ist in Richtung zur Boat-Form $B_{3,0}$ leicht verzerrt.

 Verbindung	<i>Q</i> (pm)	Θ (°)	φ (°)	
 1 Molekül A	48.2	166.6	156.8	
Molekül B	46.6	166.9	153.6	
2	46.8	165.6	101.3	
3	76.8	88.1	146.2	
4 Molekül A	48.6	169.3	129.1	
Molekül B	49.4	168.6	147.9	
5 Molekül A	75.0	92.0	156.4	
Molekül B	74.8	91.3	156.0	
6	60.3	1.3	332.8	

Tab. 3. Puckering-Parameter der untersuchten Benzoyl-xylo-Verbindungen

Abb. 2. Stereogramm der Puckering-Parameter (Tab. 3) der Pyranoseringe von 1-6

Ein Grund für das ungewöhnliche Verhalten von 5 im Kristall läßt sich nur schwierig angeben. Von Interesse ist der Torsionswinkel O1 - C1 - O5 - C5, der -75.0° (A) bzw. -77.0° (B) beträgt. Dieser Winkel kommt einer *gauche*-Konformation nahe,

was bedeutet, daß die Methoxy-Gruppe an C1 in der gefundenen ${}^{2}S_{O}$ -Konformation eine Lage einnimmt, die, bezogen auf den Ringsauerstoff, einer Axialstellung in der ${}^{1}C_{4}$ -Form entspricht. Entsprechendes gilt für das Chlor in der ${}^{2}S_{O}$ -Form von 3^{8}). Diese Anordnung deutet daraufhin, daß der anomere Effekt in 5 ähnlich wie in 3 noch wirksam genug ist, um diesen Teil des Moleküls in die angegebene Form zu zwingen. Die Bindungslängen am anomeren Zentrum von 5 weisen keine Besonderheiten auf¹⁹). Der Torsionswinkel O5-C1-O1-C11 zeigt mit -63.2° (A) bzw. -63.1° (B) an, daß die Bindung O1-C11 zum Ringsauerstoff gedreht ist. Dies ist genau die Stellung, die bei Wirkung des exo-anomeren Effektes eingenommen werden sollte.

Die drei Benzoyl-Gruppen sind quasi-äquatorial angeordnet. Ihre Anordnung ist, wie bei allen anderen Benzoaten, so, daß die Carbonyl-Bindung und der zugehörige Wasserstoff am Pyranosering etwa syn-parallel angeordnet sind. Aus den Torsionswinkeln der Tab. 2 (links unten) geht hervor, daß die Abweichungen von dieser Stellung sich zwischen 17.0° und -31.9° bewegen. Die Projektion einer Elementarzelle mit Blick auf die Ebene A/B¹⁵⁾ zeigt, daß kurze intermolekulare Abstände zwischen den Benzoylgruppen nicht vorhanden sind.

Um die Verhältnisse in Lösung abzusichern, haben wir die bereits bekannten NMR-Daten¹¹⁾ von **5** nochmals überprüft. Wir sind hierbei praktisch zu identischen Ergebnissen gelangt. Die gefundenen Kopplungskonstanten lassen sich nur mit dem Gleichgewicht der beiden Sesselformen **5a** \Rightarrow **5b** vereinbaren und stellen entsprechende Mittelwerte dar. Beim Abkühlen bleibt das Spektrum im wesentlichen unverändert. Geringfügig scheint der Anteil der ⁴C₁-Form bei tiefer Temperatur zuzunehmen. Eine Gegenüberstellung der in Aceton gefundenen Kopplungskonstanten mit den entsprechenden Torsionswinkeln aus Tab. 2 ergibt folgendes Bild: $J_{1,2} = 6.5$ (145.1° bzw. 140.8°); $J_{2,3} = 8.2 (-174.8°$ bzw. -167.6°); $J_{3,4} = 8.4 (145.2°$ bzw. 137.1°); $J_{4,5} = 4.8 (-91.8°$ bzw. -78.7°); $J_{4,5'} = 8.6 (32.2°$ bzw. 36.3°). Es ist zu erkennen, daß insbesondere die Kopplungen der Protonen an C-5, aber auch an C4 und C3, mit einer Twist-Boat-Konformation in Lösung nicht vereinbar sind.

Frau H. Nürnberger danken wir für die Gewinnung der Kristalle. Der Deutschen Forschungsgemeinschaft sind wir für die Unterstützung der Untersuchungen zu Dank verpflichtet.

Literatur

- ¹⁾ XXI. Mitteil.: P. Luger, B. Elvers und H. Paulsen, Chem. Ber. 112, 3855 (1979).
- ²⁾ L. D. Hall und J. F. Manville, Can. J. Chem. 47, 19 (1969).
- ³⁾ K. Bock, C. Pedersen und P. Rasmussen, J. Chem. Soc. Perkin Trans. 1 1973, 1456.
- ⁴⁾ P. Luger, Ph. L. Durette und H. Paulsen, Chem. Ber. 107, 2615 (1974).
- ⁵⁾ C. V. Holland, D. Horton und J. Jewell, J. Org. Chem. **32**, 1818 (1967); H. Paulsen, F. Garrido Espinosa, W.-P. Trautwein und K. Heyns, Chem. Ber. **101**, 179 (1968); P. L. Durette und D. Horton, Carbohydr. Res. **18**, 57 (1971).
- ⁶⁾ H. Paulsen, P. Luger und F. R. Heiker, Anomeric Effect, ACS Symposium Series 87, Editor W. S. Szarek und D. Horton, S. 63, Washington DC 1979.
- 7) P. Luger, G. Kothe und H. Paulsen, Acta Crystallogr., Ser. B 35, 2079 (1979).
- ⁸⁾ P. Luger, G. Kothe und H. Paulsen, Chem. Ber. 109, 1850 (1976).
- 9) P. L. Durette und D. Horton, J. Org. Chem. 36, 2658 (1971).

- ¹⁰ P. Luger, G. Kothe, K. Vangehr, H. Paulsen und F. R. Heiker, Carbohydr. Res. 68, 207 (1979).
- ¹¹⁾ P. L. Durette und D. Horton, Carbohydr. Res. 18, 403 (1971).
- 12) R. W. Jeanloz, H. G. Fletcher jr. und C. S. Hudson, J. Am. Chem. Soc. 70, 4044 (1948).
- ¹³⁾ P. Main, M. Woolfson und G. Germain, MULTAN, A Computer Program for the Automatic Solution of Crystal Structures, Univ. York (England) 1975.
- ¹⁴⁾ X-Ray System Version of June 1972, Techn. Rep. TR-192, Univ. Maryland 1972.
- ¹⁵⁾ Die Abbildung kann auf Wunsch bei den Verfassern angefordert werden.
- ¹⁶⁾ J. B. Hendrickson, J. Am. Chem. Soc. 89, 7036 (1967).
- 17) D. Cremer und J. A. Pople, J. Am. Chem. Soc. 97, 1354 (1975).
- ¹⁸⁾ G. A. Jeffrey und J. H. Yates, Carbohydr. Res. 74, 319 (1979).
- ¹⁹⁾ G. A. Jeffrey, J. A. Pople und L. Radom, Carbohydr. Res. 25, 117 (1972).

[394/79]